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INTRODUCTION

We aim to find an unbiased estimate of the spectral content of an acoustic source in a
shallow water channel, from measurements on an array of acoustic sensors. The acoustic
source spectrum is assumed to be a mixture of discrete and continuous spectral components.
Due to multipath arrival at the sensors the spectral distribution at any individual sensor is no
longer simply a scaled version of the source spectrum. Consequently, spectra associated with
individual sensor signals produce biased estimates of the source spectrum.

Information about the spectral content of the source is present in the sensor array signals.
The signals arriving at the sensors have, however, been modified by the channel characteristics
from source to sensor. We aim to equalize the channel characteristics that produced each
sensor signal, to generate multiple estimates of the source spectrum. The "volatility" of the
channel characteristics for a particular sensor in the array is taken into account when fusing the
source spectral estimates produced by the individual sensors.

An example integrated throughout the paper shows the efficacy of this procedure,
predicated on being able to obtain accurate source-sensor transfer characteristics.

PROBLEM SCENARIO

Let us focus on the problem first. Assume that we have a shallow water channel with a
depth of 104 m. Assume a vertical sensor array of 34 sensors, spaced 3 m apart, and thus
spanning the depth of the channel. We emphasize that in our procedure there is no need for a
vertical array, equal spacing, or spanning the depth of the channel; indeed, the procedure
applies for a completely arbitrary array configuration. The acoustic source is assumed to be
located at a range of 1000 m and a depth of 40 m.



A Matlab version of KRAKEN1 is used to model the littoral channel, implementing the
normal mode approach. For a given sound velocity profile, a realistic one measured in the Gulf
of Mexico, bottom absorption, attenuation due to surface and bottom scatter, and the given
channel depth, array sensor locations, and source position the transfer functions from the
source to the individual sensors can be evaluated numerically with this water - sediment - rock
layer model. This is done for a range of frequencies of interest, we used 15-150 Hz, and the
results stored. Given the transfer function information we then generate the appropriate
complex exponential received at a given sensor, and sample this signal at an appropriate rate
(our sampling frequency was 300 Hz). Thus we use the normal mode approach to generate a
sensor data array for a particular discrete frequency. Assuming the channel to be linear, the
generation process can be repeated for several frequencies (we used the set f=[75, 100, 125]
(in Hz), with corresponding amplitudes A=[1, 1/3, 1/5] and phase angles φ=[0, 0, 0], to
produce a periodic signal as might be expected from rotating machinery), and combined into
the discrete sensor data array Xd. A sensor data array Xc, due to a continuous source spectral
component, was generated using the KRAKEN source-sensor impulse responses with an
autoregressive input; AR(2) with poles at 90 and 115 Hz, and pole radii at 0.95. With Xn
representing the wideband sensor noise, the 100x34 sensor array data matrix X is thus given by

X = Xd + Xc + Xn (1)

The discrete-signal-to-wideband-sensor-noise ratio is set to approximately 30 dB, while the
continuous source component is visible above the wideband noise floor at the sensors. We
used 100 snapshots of sensor array signals.

SOURCE SPECTRAL ESTIMATION PROCEDURE

To find out which discrete frequencies are present in the source, we perform column-wise
spectral estimation on the data matrix X. Several methods are available to do this, ranging from
the classical periodogram (DFT-based) to the modern, model-based approaches. Assuming that
the relevant frequency components are spaced apart (here, 25 Hz) by much more than the
Rayleigh limit of resolution (300/100 = 3 Hz here), the periodogram-based methods are nearly
optimal frequency estimators for the white noise case.2 To derive accurate frequency estimates
one can use lots of zero-padding. With a quadratic least squares fit in the neighborhood of
spectral peaks, some immunity to the presence of noise results.

Discrete Source Component

Note that the periodogram exhibits processing gain, thereby increasing the emphasis on
discrete spectral components over wideband noise as more data (before zero-padding) is used.
Each of the column-wise spectral density (or power) estimates reflects the discrete source
components, as modified by the source-sensor transfer functions. Consequently, the relative
amplitudes and phase angles of the discrete spectral components have changed. Indeed, due to
a null, at a particular frequency, in a particular source-sensor transfer function, one or more of
the discrete spectral components may not be present at all. However, it is unlikely that such a
null occurs for all of the sensors in the array. Information from all column-wise spectral
estimates must be fused, to detect that set of discrete frequencies most likely to have occurred
at all sensors. To illustrate, we simply use the sum of all the column-wise spectral estimates
and then find the peak location frequencies. This results for our example, using a Blackman
window and zero-padding to 8192 points, in the frequency estimates f=[75.008,  99.977,
124.88]. Note that the estimation error is generally larger for the weaker discrete frequency
components.



Source Localization

Knowing a discrete frequency estimate, we can use KRAKEN to generate a database of
complex (amplitude/phase) sensor information, D(d,r), for varying source depth and range,
given the sound velocity profile and sensor array configuration. Narrowband filtering of the
array data at the individual discrete frequency estimates, generates a number of filtered array
data matrices (one for each discrete frequency) or, after Fourier transformation or spectral
modeling, the equivalent row-wise spectral sensor measurements, Y(f).

A multitude of matched field processors (MFP) is available to compare the measurement
Y(f) with the database D(d,r) to yield source depth and range estimates which correspond best
with the received sensor data3. The results for each of the discrete frequencies can be fused, to
produce an improved estimate.

Our present aim is to show that bias-free estimation of source spectra is feasible.
Therefore, we assume that the source can be localized accurately via MFP, meaning availability
of a source depth estimate d=40 m, and a source range estimate r=1000 m.

Discrete Source Amplitude/Phase Estimation

If we let s represent the sensor array geometry, we can now use KRAKEN to generate the
array H(f,s,d,r) of sensor-measured responses to a unit amplitude complex exponential source.
The latter allows us to apply its inverse to the spectral sensor measurements Y(f), thereby
equalizing the effects of the source-sensor transfer functions. This yields, for each of the
sensors, an estimated source amplitude and phase angle for each of the discrete frequency
components, as shown in Figure 1. The variability of these estimates comes from 3 sources:
sensor measurement noise, differences in source-sensor transfer characteristics, and the
presence of the continuous spectral component in the source. For the sake of simplicity, we
fuse all estimates into their weighted average, where the weighting is proportional to the
absolute value of the source-sensor transfer function value at the given frequency. The latter is
aimed at countering the noise amplification effects from inverting small transfer function
values. This fusing process results in source amplitude and phase angle estimates of A=[1.024,
0.3391, 0.1952] and φ=[-0.006499, -0.0006275, -0.001556] (in π radians) respectively.
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Figure 1 Discrete Amplitude Estimates (L) and Discrete Phase Angle Estimates (R).



Source Inference and Quality Control

On the basis of the source amplitude and phase angle estimates we now reconstruct or
estimate the discrete source component. Inference on the source can then be obtained, for
example by template matching, audio identification, or other pattern recognition procedures.

The source estimates, together with the earlier obtained source-sensor transfer function
information H(f,s,d,r), can be used to reconstruct or estimate Xd. Now X-Xd (=Xc+Xn), the
continuous sensor residual, can provide an idea of how well the discrete source component
was captured. When localization is in error, or when discrete frequency estimates are off, be it
in frequency, amplitude, or phase angle, the continuous sensor residual is less in tune with
sensor noise statistics. This quality control process can also be done spectrally, taking
advantage of the processing gain for discrete components. In any case, reconstruction helps to
ascertain the integrity of the many processing steps.

Continuous Source Component

So far we have seen that accurate results can be obtained for discrete source components,
given conducive processing and environment. We therefore continue on the basis of the
continuous sensor residual estimate.

As samples from an arbitrary signal can be represented as a linear combination of discrete
frequency components, via the DFT frequencies, one might be tempted to apply the above
procedure for discrete frequencies to the continuous spectral component.  However, this
method does not readily extend to the case of a continuous spectral component.  This is seen
when we examine what happens when we have a single discrete frequency component which
cannot be captured by a single DFT frequency. As a result of spectral leakage the power in this
single frequency component will be distributed over all, or most, of the uniformly spaced DFT
frequencies. As the source-sensor transfer functions are different for each of the DFT
frequencies, the DFT frequency components are multiplied by different complex constants
corresponding to the transfer function values at those frequencies. The actual single frequency
component, however, would undergo a change by a single complex constant, corresponding to
its source-sensor transfer function value. The decomposition corresponding to the
representation components that were subject to the different transfer functions no longer
corresponds to the representation for the original discrete component that was subject to a
single transfer function value! Consequently, a decomposition type representation can not be
used here.

Assuming that the sensor signals are bandpass filtered, so that no DC component is
measured and aliasing is small enough after sampling, the continuous sensor signal satisfies:

(2)

where H(ω) represents the source-sensor transfer function, and X(ω) represents the Fourier
transform of the source signal. While in its Riemann sum approximation the integral can be
thought of as a linear combination of discrete sinusoids, this will only approximate the signal
y(t) well if the discretization in the frequency variable ω  is fine enough. The latter means that
the product H(ω)X(ω) is nearly constant over the discretization interval. While X(ω) is fairly
smooth over frequency, H(ω) for the underwater acoustic problem is not. This can be seen by
finding H(ω) over the sensor bandpass filter's frequency range of interest. Figure 2 shows the



source-sensor magnitude response for sensor #17, as evaluated by KRAKEN at the 2048 DFT
frequency samples. Note the resonant volatility of H(ω), which makes it more difficult than in
the discrete source frequency case to apply the corresponding inverse, or equalizer, to the
sampled measured sensor signals. In principle, H(ω), inclusive of our bandpass filter,
corresponds to an impulse response. The latter can be approximated by discretization, resulting
in the unit pulse response h(n). The sampled version of (2) then expresses the received sensor
signal samples y(n) as the convolution of the unit pulse response and the source signal samples
x(n). An inverse DFT of the 2048 DFT frequency samples for H(ω) yields the approximate
(aliased) impulse response shown in Figure 2.
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Figure 2 Source-Sensor#17 Characteristics: Magnitude Response (L) and Unit Pulse Response (R).

For a sound velocity of 1500 m/s, it takes 2/3 of a second for sound to travel 1000 meters.
At a sampling frequency of 300 Hz it takes 200 samples to travel 1000 meters. The source-
sensor unit pulse response must reflect this 200 sample interval, as seen in Figure 2. If too few
DFT frequency samples are taken severe aliasing results, reflected in the lack of such necessary
physical attributes. In the sequel 1024 point DFT results were used.

As before, the application of spectral estimation techniques to the sensor signals does not
reflect the source spectrum directly, because the source signal has been subject to the source-
sensor transfer functions. Knowing the accuracy of the unit pulse response, the corresponding
DFT can simply be “inverted” on a frequency sample-by-sample basis. As the measured sensor
signals are of a bandpass type, the DFT values in the stopbands are considered zero, and so are
their “inverses.” An IDFT of the “inverse” DFT frequency samples then yields a filter that,
when cascaded with the unit pulse response filter, yields an equalized response on the order of
1 over the range of passband frequencies.

Improvements in the inverse filter design process, over the frequency sampling design
approach taken here, are certainly possible. However, while the result is by no means perfect
on a frequency-by-frequency basis, it goes a long way towards equalizing the response for a
stochastic process that is broadband relative to the local perturbations in such an equalizer.

The modified covariance method of linear prediction2 is used on each of the equalized
sensor signals to yield a corresponding AR power spectral density estimate. The gain of the
AR model is normalized by matching its autocorrelation at lag zero to the variance of the
observed sequence. The order of the AR model used was 3, i.e. one higher than the underlying
AR component, so that the extra pole could model the (equalized) wideband noise, leaving the



other two poles to model the spectral energy at 90 and 115 Hz. A weighted average, according
to the energy in the corresponding unit pulse response, fuses the AR power spectral densities,
the AR parameters, or the reflection coefficients from all sensors. Figure 3 shows the source
power spectral density (heavy line), differently averaged AR estimators (thin smooth lines), and
the averaged periodogram (noisy line), all applied to the equalized estimated continuous sensor
residual. Comparing the actual AR source spectral density and the continuous residual spectral
estimates indicates that our procedure estimates the major continuous spectral features
reasonably well in the present noisy spectrally mixed scenario, while the effects of the
"equalized" measurement noise on the continuous residual spectral estimates are not generally
negligible.
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Figure 3 Continuous Sensor Residual Spectral Estimates (100 snapshots).

Without measurement noise, the overall AR spectral density estimate improves noticeably
around the spectral peaks. When the number of snapshots is increased the spectral estimates
behave as expected, and move closer to the actual source spectral density. Therefore, no
systematic bias is apparent.

CONCLUSION

A sensor-equalization approach was demonstrated, based on arbitrary geometry sensor
array measurements, for estimating the discrete and continuous spectral components assumed
to exist in a source spectrum. The accuracy of the estimates depends on the sensitivity of the
frequency functions being sampled, over which control can be exercised, the number of
snapshots of available data, the relative strengths of the continuous and discrete source
components, and the strength of the measurement noise. Fusing of the results associated with
individual sensors reduces estimation variance, because each sensor signal reflects the same
source spectrum, while being corrupted by different sensor noise.
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